

About Us

Gangamani Enterprise Private Limited located in Bharuch, Gujarat, India is a renowned name among Rubber Industries. At Gangamani Enterprise Private limited, consistent quality of Reclaim Rubber and Rubber Crumb are manufactured compliant with all requirements of relevant national standards and tested as per prevalent internationally accepted test methods.

During its 10 years of journey, Gangamani has recorded continuous growth and has served its customers delightfully with quality of product as well as services for wide range of product applications such as Automotive & OTR tyres, Conveyor belts, Moulded & Extruded Rubber products on PAN India as well as global arena. The Company is led by richly experienced and highly qualified management team well supported by adequately qualified and experienced execution team in all business processes.

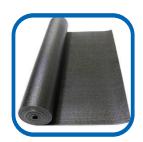
The company operates its processes complying with the requirements of Quality Management System, Environment Management System and Health and Safety Management System as per ISO 9001:2015, 14001:2015 & OHSAS 18001:2007 respectively duly certified by competent agencies. The products are produced to comply with requirements of European Union countries and are REACH compliant.

VISION

- To be preferred vendor of Reclaimed Rubber by providing the customers quality products and consistency in services.
- Develop and maintain supplier/customer relationship based on transparency, mutual trust and respect.

MISSION

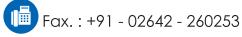
- To manufacture world class products of outstanding quality that give our customers a competitive advantage through superior products and value creation.
- To encourage stakeholders' ownership, empowerment and participation in the business.


VALUES ADDED GOALS

- Customer service and support
- Continued quality and process improvement
- Continuous improvement in leadership and work practices
- Concern for friendly environment and community
- To provide a safe workplace and healthy work habits



GRADE	Whole Tyre Reclaim			High Tensile Reclaim		Natural Rubber Tube Reclaim	Latex Reclaim Rubber	Rubber Crumb
GRADE	GE SF	GE 55	GE 44	GE HT	GE HT 44	GE NR	GE WRP	30-80 mesh
VISUAL APPEARANCE								
	Super Fine	Fine	Medium	Fine	Medium	Super Fine	Fine	Fine
CHEMICA	L PROPERTI	ES						
Ash %	10.0 max.	10.0 max.	10.0 max.	9.0 max.	9.0 max.	30.0 max	15.0 max.	10.0 max.
Carbon black %	27.0 +/-3	27.0 +/-3	27.0 +/-3	27.0 +/-3	27.0 +/-3	20.0 +/-7		30.0 +/-2
Acetone extract %	15 +/-4	15 +/-3	15 +/-4	15 +/-4	15 +/-4	11 +/-5	5.0 max.	8.0 max.
RHC by difference %	47 min.	47 min.	47 min.	48 min.	48 min.	42 min.	80 min.	50 min.
PHYSICAL PROPERTIES								
Sp. Gravity gm/cc	1.15 +/-0.05	1.15 +/-0.05	1.15 +/-0.05	1.15 +/-0.05	1.15 +/-0.05	1.25 +/-0.05	0.95 +/-0.05	1.13 +/-0.02
Tensile strength kg/cm²	40 min.	35 min.	30 min.	70 min.	60 min.	30 min.	25 min.	
Elongation @break %	200 min.	200 min.	150 min.	250 min.	250 min.	225 min.	200.	
Mooney viscosityML (1+4)@ 100°C	25~45	25~45	25~55	35~60	35~60	20~50	15 min	
Hardness at Shore A	59+/-4	59+/-4	59+/-4	59+/-4	59+/-4	60+/-5	60+/-5	
APPLICAT	ION					ı	ı	
	 Tyres Hoses Moulded products Conveyer belts Adheshives Calandered products 	TyresFootwearTyre flapsRubber sheetsBattery containers	Shoe solesMouldingsMattingsBatteryContainers	 Tyres Precured retreads Moulded products Solid tyres Conveyor belts 	 Tyres Precured retreads Moulded products Solid tyres Conveyor belts 	Automobile extruded product 2-3 wheeler tubes/auto tubes/ truck tubes/ cyle tubes Extruded/ calendared/ moulded parts	 Footwear Shoe soles Coloured & white rubber product Oil Seals Auto parts 	 Tyres Playgrounds Artificial Turf/Garden Rubber tiles Automobile parts Hose pipes Mats Conveyor belts
ADVANTAGES								
	Faster mixing cycle Improved die swell Reduction in electrical power consumption Low compound cost	 Faster mixing cycle. Improved die swell Reduction in electrical power consumption Low compound cost 	 Faster mixing cycle Improved die swell Reduction in electrical power consumption Low compound cost 	Higher Physical properties as compound to other grade Higher dosage reduces the cost of compound. Higher dosage increases the green tack of the compound	Higher Physical properties as compound to other grade Higher dosage reduces the cost of compound. Higher dosage increases the green tack of the compound	Improve extrusion quality with better dimensional control Minimum increase in air permeability as compared to other grades of reclaim rubber Reduction in electrical power consumption Low compound cost Fast mixing cycle	Low compound cost Faster Mixing with natural rubber Impovered extrusion	Fast mixing Low compound cost



- Registered Office / Factory Address:
 Gangamani Enterprise Pvt. Ltd.
 Survey No. 146, Behind Atithi Resort, N.H.No.8, At & PO Chavaj-392015, Gujarat, India
- marketing@gangamani.in, gangamani2001@yahoo.com
- +91 9512707027

